Stash your Cache - Cross-Container Linux Page Cache Covert Channel

Naor Radami
Ben Gurion University

Trishita Tiwari
Cornell University

Novak Boskov
Boston University

Ari Trachtenberg
Boston University

Abstract

Recently software containers have become a popular unit of light-weight
virtualization. As opposed to virtual machines, containers offer faster boot
times and lower resource usage by utilizing the services and resources of a
host operating system. Consequently, container isolation is handled thrﬂugh
enhanced operating system process isolation techniques. In this work,
demonstrate how the isolation of containers can be undermined in the
various cloud settings including the top commercial environments. Our
attacks make use of union file systems, one of the key distinctive features of
software containers. The attacks include leakage of sensitive data out of
the running process context, and creating a covert channel which may be
used to transfer data and commands, which will enable us to perform data
mulling out of the organization. Our attacks affect the most recent Linux
kernels, even those with the patches for the side-channel mitigation
against page cache attacks éEUE -2019-5489). This highlights the need
f?r rﬁth;ﬂklng the page cache design in the context of mu ts~tenant container
clouds

Container based virtualization

* Package software with all its dependencies

* Maximize performance
* Save on boot time, memory usage, amount of storage, etc.
* Make orchestration easier (service scaling, migration, etc.)

COMNTAINER
03 (RHEL)

APP A

HOST OS5 (RHEL/ATOMIC)

HARDWARE

CONTAINER

https:/ fwww.redhat.com/fen/blog fvirtual- machines-or-containers-maybe-both

Containers Reuse The Page Cache For Shared Files

* Page Cache is indexed using inode objects

* Both containers point to the same inode, despite using different
mount targets

s Ag

C15ls-i /... Joverlay2/abc/merged/mysqld
2497575

C251Is-i /.../overlay2/1b3/merged/mysqld
2497575

Figwre 162 .':'..l.'.l-:ln.'.'..r.ﬁ-:.'ur_l-.'. AR ML R

“Understanding the Linux Kernel”, Bovet & Cesat;

Mincore

#include <sys/mman.h>

int mincore(void *addr, size_t length, unsigned char *vec);

mincore() returns a vector that indicates whether pages of the
calling process's virtual memory are resident in core (RAM), and
s0 Will not cause a disk access (page fault) if referenced. The

kernel returns resldency informatlion about the pages starting at
the address addr, and continuing for Llength bytes.

https://man7.org/linux/man-pages/man2/mincore.2.html

Sensitive data leakage from a process context

* Infecting a common library with our malicious code.

* |dentifying sensitive data from within the process context.
* “touching” pages within a common file or library to encode the sensitive data.

* |dentifying the message from a different runtime context using cache information
(mincore, or timing).

Process Process -I\"I

A

cache

Shared Library

BEdEcE

Container A Container B

* Infecting a common library or
executable.

* Container A — “touches”
pages of a common file or Library A Library A
library to encode the
message,

NS
Library A “.nn..

2102U1LW

* Container B — Identifying the
message using cache
information (mincore, or
timing).

e
A

< 4
Demonstration on a major cloud provider

Container A

radaminaor@Naors-MBP Downloads % kubectl exec --stdin —-tty nginx-admin-deployment-68f9cfbob9-knré2 -- /bin/bash
root@nginx-admin-deployment-468f9cfb9b9~knré2:/#

root@Pnginx-admin-deployment-68f9cfbob9-knré2: /&

root@Pnginx-admin-deployment-4681f9cfbob9-knré2: /8 ./spy_on /lib/x86_64-1linux-gnu/libhistory.so.7.@

ea110068/1

rootPnginx~admin-deployment-48f9cfbob9-knré2: /& ./page_cache_timing.s /1ib/x86_64~1linux-gnu/libhistory.s0.7.8 2
argv(1] = /1ib/x86_64-1inux-gnu/libhistory.so0.7.8

file includes 1@ pages

47,

rootenginx-admin-deployment-46879cTbob9-knr62: /8 ./spy_on /lib/x86_64-linux-gnu/libhistory.so.7.0

go11004311

Container B

radaminaor@Naors-MBP Downloads % kubectl exec =--stdin --tty nginx-deployment-5f8bd88c54~9vfp7 -~ /bin/bash
rootenginx-deployment-5f8bd88c54-9vfp7:/#

root@nginx-deployment-5f8hd88c54-9vfp7: /¥

root@nginx~deployment-5f8bd88cS54&~9vfp7:/# ./spy_on /1lib/x86_é4~linux-gnu/libhistory.so.7.8

pa11eedall

root@Pnginx-deployment-5f8bd88c54-9vrfp7: /¥ ./spy_on /lib/x86_64-linux-gnu/libhistory.so0.7.80

ge11eegiil

CVE-2019-5489 patch

* Exploits demonstrated in the “Page Cache Attacks” paper by Gruss et al. lead to a
patch in the Linux kernel on the mincore syscall. This patch introduces an
additional permission-checking routine, can_do_mincore, that is invoked before
mincore. If the user passes the permission checks, they may obtain the output
for mincore as before. However, if the permission checks fail, the user cannot
obtain the information that mincore would otherwise disclose.

* This patch is insufficient

* The container management engine shares common files across different containers
through the copy on write mechanism.

* This means that each container gets the illusion of exclusive access even though the
underlying file is shared.

Why is this a fundamental problem?

* Since each container runs from a base image, Docker also optimizes the usage of

Images.

* Instead of copying around all the image files for each newly created container, the container engine
utilizes union filesystems. By doing so, the container engine achieves that all the containers share the

files derived from the common base image as long as the containers do not change them. This is a

footprint and performance enhancement. Removing this enhancement would significantly impact

memory and performance.

* Removing the mincore functionality was not successful in the past and this was

reverted by Linus.

* "For Netflix, losing accurate information from the mincore syscall
would lengthen database cluster maintenance operations from days to
months. We rely on cross-process mincore to migrate the contents of a

page cache from machine to machine, and across reboots.”

* Even if we remove the mincore functionality, we would still be able to infer which
pages are in the cache by measuring the time it takes to load the pages.

Threat Model

Vulnarability Use Cae impact ehhood
1-5|High) 1- 5 (Freguent)]

M ey Sola
apphication
| pEnd g o] |

Integnity checking tools, Comgansons and signatures,

WFELEAERL S LI [njecting Malicious code in
applcation build emvironment

Busikd environmsent

Vigdnerabda code iy bisikd Code

ortrol
Re |:4:n'|rn|:n|:|:|1: ofis

State tool analyss and checkmgwith DB for open sowrce

el ti 1]
Wil rable o

in applcation

Wulnsarabd

ibrarses i Th

enviraomment from imported

|:I.u|:Iv:a||gn=:|I and in dew code.

libes.
Sandbox for checking in run tame

N _- ---_

Protaction and acoass comvtrad om thea rapositony

Repository hMoodification and tampening Container
COMpromise witth the whads repositong reposthory
[=. 5., modifying the image,

signature or location|

Cantent thef Stealing the s=nsitive content Container
from Docker image reposiory

Sawe the images content in an encrypted fashion. Enable
pulling of images onhy to prodwection ervronment onby.

Deploy malicious
cantainer

Exploiting: From weakness to vulnerability

* We were able to prove that
mincore can be used to get cache
information of files and libraries
within the same container and

between containers on the major Container

cloud service providers.

* Attacking an organization or a cloud

d#::ln*,rment would be most
ctive if one would be able to

infect a common library code or a Container
base image, since it will enable us
to create a covert network that will
be used for data mulling and data
transfer out of the organization.

* The diagram in this slide illustrates
how this vulnerability may be used
to create a covert network of
sensitive data.

App

App B

\

Contalrer

App

Container

1011

‘Web App

